
Architecture of Scalable Embedded Device Management System with
Configurable Plug-In Translator

Hideya Ochiai
jo2lxq@hongo.wide.ad.jp

Hiroshi Esaki
hiroshi@wide.ad.jp

Graduate School of Information Science and Technology
The University of Tokyo

Abstract

Ubiquitous computer network shall include wide va-
riety of devices. This means that the ubiquitous net-
work certainly increases the heterogeneity of nodes con-
nected to the Internet, while increasing the number of
nodes. This paper proposes a system architecture to
solve this architectural challenge by the introduction
of two sub-systems: ”Configurable Plug-In Translator
System” and ”Dynamic Management Script Resolver
System”. The translator system provides generalized
interfaces to applications, by absorbing the heteroge-
neous low-level interfaces with script execution engine.
Here, the behavior of every remote node is described
by the script language. The resolver system achieves
a global scale script repository, using DNS, inheriting
the advantages of DNS, i.e., scalability, robustness and
authority management capability. The integration of
these two sub-systems autonomously provides applica-
tion software with generalized interfaces to access any
remote device node on the global Internet.

1 INTRODUCTION

In these days, many embedded electronic devices,
such as sensor and actuator nodes, tend to have com-
munication capability based on TCP/IP technology, in
order to control and to manage these nodes through the
Internet. However, we may observe that these device
nodes have their own proprietary application interface
for these remote nodes. As of today, we do not have
any established ”De-Facto” or ”De-Jule” standardized
protocol to communicate with these (embedded) device
nodes.

In the era of ubiquitous networking with a lot of de-
vice nodes, it will be getting in general that some node
on the Internet wants to access wide variety of device

nodes and that a node wants to access the remote node
whose device profile is unknown.

This paper discusses and proposes a system architec-
ture, that can achieve generalized access to these device
nodes. We propose two sub-systems in order to achieve
this challenge. The one is ”Configurable Plug-In Trans-
lator” and the other is ”Dynamic Management Script
Resolver System”. The translator system mediates the
communication between application and device nodes,
parsing and evaluating the language-based script pro-
vided by device node owner through the resolver sys-
tem. Here, the evaluation involves the translation of
data and protocol. The resolver system (supported by
DNS) inherits the advantage of DNS, such as scalabil-
ity, robustness and management capability.

The rest of this paper is organized as follows. In the
next two sections, we describe the proposed two sub-
systems: ”Configurable Plug-In Translator” and ”Dy-
namic Management Script Resolver System” respec-
tively. We address the implementation and its eval-
uation in section 4, while we discuss the future work
in section 5. Finally, section 6 gives the conclusion of
this paper.

2 CONFIGURABLE PLUG-IN
TRANSLATOR SYSTEM

In this section, we address the architecture of the
proposed translator system. Figure 1 shows the oper-
ational concept of the proposed system. The interface
of device node must be described with a certain script
form provided by some authority (e.g., by device de-
ployment organization). Then, the script obtains the
portability. i.e., we can handle the device node with
the same manner as an abstracted object, even with
the different execution platform. The translator sys-
tem, at the right side in the figure, parses and evaluates
the corresponding description of the device interface in



Figure 1. Description and Evaluation

the left side of the figure.

2.1 Description of device node interface

The proposed system must be able to deal with
many types of interface and protocol. We realize that
data-oriented description (e.g., Web Services Descrip-
tion Language[1]) is not appropriate because of the fol-
lowing reasons.

Data-oriented description :

• tends to be designed, assuming the particular un-
derlying protocol

• cannot provide logical extension

Though the data-oriented description system may
include many types of description scheme, it often re-
quires another software to actually use them.

Based on the above observation, We adopted
the process-oriented description (also called as the
language-based description). Since the process-
oriented description can express the processing se-
quence of data, the translator can communicate with
many kinds of device nodes, absorbing the heteroge-
neous proprietary interfaces and protocols.

There are many kinds of process-oriented descrip-
tion. We can classify them into the following three
categories.

1. Script Language
2. Intermedicate Code
3. Object Code

We evaluate these three description methodologies
with the following two metrics.

1. Universal Runtime Environment
2. Description Modification Capability

In order to execute these descriptions, translator re-
quires the corresponding runtime environment. From
the runtime environment point of view, we realize that
object code is not applicable in todays environment.
This is because the object code can only run on the spe-
cific CPU and OS. As for the intermediate code, once
the intermediate code is generated, we cannot modify

Figure 2. Translation Mechanism

it. On the other hand, the script language can be mod-
ified whenever you want, can be combined with other
scripts and can be automatically generated by some
services.

Based on the above observation, we adopted the
script language methodology for the process-oriented
description in the proposed system.

2.2 Translation Mechanism

Translator mediates the communication between ap-
plication and device node. Figure 2 shows the behavior
of the proposed translator system.

1. Parsing the script of the target device node
2. Translator parses the application request
3. The translator calls the corresponging function de-

scribed in the script language
4. The transation engine evaluates the function of

the script, involving the communication with the
device node, using TCP/IP sockets. This script
evaluation performs the translation of application
request and of device response.

3 DYNAMIC MANAGEMENT
SCRIPT RESOLVER SYSTEM

The translator system must obtain the appropriate
script for the target device node. In this section, we
propose the scalable script management and destribu-
tion system so that the translator can obtain the ap-
propriate script dynamically and automatically using
the script resolution sub-system, whenever it wants to
communicate with the device node.

We call this proposed system as ”Global-Scale Script
Resolution Service”. The proposed script resolution
system uses Domain Name System (i.e., DNS). We also



Figure 3. Overall System Architecture

show how the translator system described in the previ-
ous section and the resolution service system described
in this section are integrated in the proposed system.

3.1 Global-Scale Script Resolution Ser-
vice

In order to introduce the script resolution service
easily, we propose to take advantage of DNS. By ap-
pending the script registry servers to DNS with SRV
record[3], and pointing to these servers with NAPTR
record[5] which is corresponded to each device node,
the translator sub-system can resolve the appropriate
script of the target device node via the following pro-
cedure.

1. Inquire the device FQDN to DNS by NAPTR
The response message indicates the corresponding
service location of script registry server(s) which
manage the target script.

2. Inquire the translation script to one of these
servers
The response message includes the script.

3. Evaluate the posted application request(s) and the
script. The translator can provide the communi-
cation with the target device node

3.2 Overall System Architecture

Figure 3 shows the integration of the two proposed
sub-system, which is a kind of ”SOA”, Service-Oriented
Architecture.

1. Device service provider registers the description of
the service interface to the global registry.

2. Translator resolves the script from the registration
system

3. Translator communicates with the target device
node, mediating the communication between the
application and the corresponding device node.

4 IMPLEMENTATION

In this section, we describe the implementation of
the proposed system. The translator is implemented by
JAVA. We use PICNIC[6], as a device node. PICNIC
has the UDP interface for the Internet communication
and we can access temperature sensor and 7 segment
LED.

4.1 Script Design

The script of the prototype system consists of several
command entries. Inside these command entries, the
stub code which specifies the behavior of translator is
described respectively. The stub code description is a
functional language on XML.

The following is an example of the command entries.

<interface>
<command name="config">

<!-- stub code 1 -->
</command>
<command name="get">

<!-- stub code 2 -->
</command>
<command name="display">

<!-- stub code 3 -->
</command>

</interface>

And the following is an example of the stub code
section.

<dgRecv>
<dgSend>

<dgSocket>
<text>203.178.135.86</text>
<int>10001</int>

</dgSocket>
<getq name="myarray" />

</dgSend>
</dgRecv>

These script means that the translator should send the
contents of ”myarray” to the node ”203.178.135.86”
with UDP port 10001 and return the response data-
gram.

4.2 Translator System

Translator system is mainly composed of three
parts: (1) ”Command Channel” which decomposes ap-
plication requests, (2) ”Script Resolver” which obtains
the script of the target node, and (3) ”Script Evalua-
tor” which translates the application requests based on
the script.

The implementation package diagram is shown in
Figure 4 (generated by Eclipse UML[2]). Figure 5
shows the result of translation of application com-
mands. It achieves the translation into UDP messages
that can operate PICNIC device node.



Figure 4. Translator Implementation

Figure 5. Application Command Translation

4.3 Script Resolution Service

Suppose that two device nodes,
”node01.sample.org” and ”node02.sample.org”,
are deployed on the Internet, and that the script of
these nodes are managed under ”csr.sample.org”. We
configure the zone file of BIND9[4] as followed:

node01 IN NAPTR 10 0 "S" "CSR+TCP" "" _csr._tcp.sample.org.
node02 IN NAPTR 10 0 "S" "CSR+TCP" "" _csr._tcp.sample.org.

_csr._tcp IN SRV 10 0 3072 csr.sample.org.
csr IN A 203.178.135.25
csr IN AAAA 2001:200:0:1cd1::25

This configuration shows that node01 are bound to
the service ” csr. tcp” which is provided at TCP3072 of
csr.sample.org (203.178.135.25 or 2001:200:0:1cd1::25).

5 DISCUSSION

The proposed system delegates the authority of pro-
viding the script to device deployment organizations.
However, it is not practical for them to prepare all of
the script. The script should be structured and should

be divided into several parts: e.g., (1) service type part,
(2) logical part and (3) service location part.

The fact of script division capability implies that
these divided descriptions might be able to be provided
by different authorities which have specific role(s) in
the whole system. For example, (1) application au-
thority might define the service type part, (2) device
manufacturer might provide the logical source code,
and (3) device deployment organization might add the
service location part.

6 CONCLUSION

In order to provide a generalized access method for
wide variety of proprietary device nodes on the global
Internet, we proposed the ”Scalable Embedded Device
Management System”. This system consists of two
sub-systems; ”Configurable Plug-In Translator” and
”Dynamic Management Script Resolver System”.

The translator is designed to parse and evaluate the
description of device node interface. It mediates the
communication between application and device node,
translating the data and protocol between them.

The script resolver system distributes the registerd
script for translator system. By taking advantage of
DNS, it achieves scalability, robustness and manage-
ment capability.

ACKNOWLEGEMENT

A part of this work was based on the part of the
Research and Development Program of the Ubiquitous
Network Authentication and Agent(2003, 2004, 2005),
of the Ministry of Internal Affairs and Communica-
tions, Japan.

References

[1] E. Christensen, F. Curbera, G. Meredith, and S. Weer-
awarana. Web services description language (wsdl) 1.1.
Technical report, W3C, mar 2001.

[2] Eclipse uml. http://www.omonodo.com/.
[3] A. Gulbrandsen, P. Vixie, and L. Esibov. A dns rr for

specifying the location of services (dns srv). Technical
report, IETF, 2000.

[4] Internet Systems Consortium. BIND9 Administrator
Reference Manual, nov 2005.

[5] M. Mealling and R. Daniel. The naming authority
pointer (naptr) dns resource record. Technical report,
IETF, 2000.

[6] M. Ochiai. Picnic. Transistor Gijyutsu, pages 249–261,
jan 2001.


